Model

Model

Learn how to work with Models.

The official documentation for the Nextmv Python SDKs has been moved to this site. This page is not being updated anymore.

Each sub-module has a convenience function for creating native sklearn model objects from nextmv.Options. This convenience function allows you to set up a model using the parameters that are customized through options. Notice that the return type is an sklearn.<Model>.

Consider the following examples, which make use of the classic diabetes dataset to fit a model and then make a prediction.

Dummy

import time

from nextmv_sklearn import dummy
from sklearn.datasets import load_diabetes

X, y = load_diabetes(return_X_y=True)

start_time = time.time()

options = dummy.DummyRegressorOptions().to_nextmv()
model = dummy.DummyRegressor(options)

fit = model.fit(X, y)
print(fit.predict(X[:1]))
Copy

Run the script:

$ python main.py --help
[152.13348416]
Copy

Ensemble

import time

from nextmv_sklearn import ensemble
from sklearn.datasets import load_diabetes

X, y = load_diabetes(return_X_y=True)

start_time = time.time()

options = ensemble.GradientBoostingRegressorOptions().to_nextmv()
model = ensemble.GradientBoostingRegressor(options)

fit = model.fit(X, y)
print(fit.predict(X[:1]))
Copy

Run the script:

$ python main.py --help
[200.87337372]
Copy
import time

from nextmv_sklearn import ensemble
from sklearn.datasets import load_diabetes

X, y = load_diabetes(return_X_y=True)

start_time = time.time()

options = ensemble.RandomForestRegressorOptions().to_nextmv()
model = ensemble.RandomForestRegressor(options)

fit = model.fit(X, y)
print(fit.predict(X[:1]))
Copy

Run the script:

$ python main.py --help
[180.54]
Copy

Linear model

import time

from nextmv_sklearn import linear_model
from sklearn.datasets import load_diabetes

X, y = load_diabetes(return_X_y=True)

start_time = time.time()

options = linear_model.LinearRegressionOptions().to_nextmv()
model = linear_model.LinearRegression(options)

fit = model.fit(X, y)
print(fit.predict(X[:1]))
Copy

Run the script:

$ python main.py --help
[206.11667725]
Copy

Neural network

import time

from nextmv_sklearn import neural_network
from sklearn.datasets import load_diabetes

X, y = load_diabetes(return_X_y=True)

start_time = time.time()

options = neural_network.MLPRegressorOptions().to_nextmv()
model = neural_network.MLPRegressor(options)

fit = model.fit(X, y)
print(fit.predict(X[:1]))
Copy

Run the script:

$ python main.py -max_iter 2500
[195.53288524]
Copy

Tree

import time

from nextmv_sklearn import tree
from sklearn.datasets import load_diabetes

X, y = load_diabetes(return_X_y=True)

start_time = time.time()

options = tree.DecisionTreeRegressorOptions().to_nextmv()
model = tree.DecisionTreeRegressor(options)

fit = model.fit(X, y)
print(fit.predict(X[:1]))
Copy

Run the script:

$ python main.py
[151.]
Copy

Page last updated

Go to on-page nav menu